The effect of diffusion on the dynamics of unsteady detonations

نویسندگان

  • C. M. Romick
  • T. D. Aslam
  • J. M. Powers
چکیده

The dynamics of a one-dimensional detonation predicted by a one-step irreversible Arrhenius kinetic model are investigated in the presence of mass, momentum and energy diffusion. A study is performed in which the activation energy is varied and the length scales of diffusion and reaction are held constant. As the activation energy is increased, the system goes through a series of period-doubling events and eventually undergoes a transition to chaos. The rate at which these bifurcation points converge is calculated and shown to be in agreement with the Feigenbaum constant. Within the chaotic regime, there exist regions in which there are limit cycles consisting of a small number of oscillatory modes. When an appropriately fine grid is used to capture mass, momentum and energy diffusion, predictions are independent of the differencing scheme. Diffusion affects the behaviour of the system by delaying the onset of instability and strongly influencing the dynamics in the unstable regime. The use of the reactive Euler equations to predict detonation dynamics in the unstable and marginally stable regimes is called into question as the selected reactive and diffusive length scales are representative of real physical systems; reactive Navier–Stokes is a more appropriate model in such regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame

In this work we investigate the dynamics of self-sustained detonation waves that have an embedded information boundary such that the dynamics is influenced only by a finite region adjacent to the lead shock. We introduce the boundary of such a domain, which is shown to be the separatrix of the forward characteristic lines, as a generalization of the concept of a sonic locus to unsteady detonati...

متن کامل

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

UNSTEADY CONVECTIVE DIFFUSION IN A HERSCHEL–BULKLEY FLUID IN A CONDUIT WITH INTERPHASE MASS TRANSFER

The combined effect of non-Newtonian rheology and irreversible boundary reaction on dispersion in a Herschel-Bulkley fluid through a conduit (pipe/channel) is studied by using generalized dispersion model. The study explains the development of dispersive transport following the injection of a tracer in terms of three effective transport coefficients namely exchange, convective and dispersion co...

متن کامل

Unsteady free convection flow between two vertical plates with variable temperature and mass diffusion

The unsteady free convection flow between two long vertical parallel plates withvariable temperature and mass diffusion in the presence of the thermal radiation hasbeen presented. The governing dimensionless coupled linear partial differentialequations on the flow are solved by using the Laplace transform technique. TheExact solutions have been obtained for the fluid velocity, temperature and t...

متن کامل

Dynamics of Unsteady Inviscid and Viscous Detonations in Hydrogen-Air

The dynamics of one-dimensional, overdriven, hydrogen-air detonations predicted in the inviscid limit as well as with the inclusion of mass, momentum, and energy diffusion were investigated. A series of shock-fitted calculations was performed in which the overdrive was varied in the inviscid limit. The 0.97 MHz frequency of oscillation predicted for a f = 1.1 overdriven detonation agrees well w...

متن کامل

Improved Mathematical Model for Helicopters Flight Dynamics Applications

The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012